Proof Complexity and the Kneser-Lovász Theorem (I)
نویسندگان
چکیده
We investigate the proof complexity of a class of propositional formulas expressing a combinatorial principle known as the KneserLovász Theorem. This is a family of propositional tautologies, indexed by an nonnegative integer parameter k that generalizes the Pigeonhole Principle (obtained for k = 1). We show, for all fixed k, 2Ω(n) lower bounds on resolution complexity and exponential lower bounds for bounded depth Frege proofs. These results hold even for the more restricted class of formulas encoding Schrijver’s strenghtening of the Kneser-Lovász Theorem. On the other hand for the cases k = 2, 3 (for which combinatorial proofs of the Kneser-Lovász Theorem are known) we give polynomial size Frege (k = 2), respectively extended Frege (k = 3) proofs. The paper concludes with a brief announcement of the results (presented in subsequent work) on the complexity of the general case of the KneserLovász theorem.
منابع مشابه
Short Proofs of the Kneser-Lovász Coloring Principle
We prove that the propositional translations of the KneserLovász theorem have polynomial size extended Frege proofs and quasipolynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lovász theorem that avoids the topological arguments of prior proofs. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma. The prop...
متن کاملGeneralized Kneser Coloring Theorems with Combinatorial Proofs
The Kneser conjecture (1955) was proved by Lovász (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results, namely the Borsuk-Ulam theorem and its extensions. Only in 2000, Matoušek provided the first combinatorial proof of the Kneser conjecture. Here we provide a hypergraph coloring theorem, with a combinatorial proof...
متن کاملPropositional Proofs in Frege and Extended Frege Systems (Abstract)
We discuss recent results on the propositional proof complexity of Frege proof systems, including some recently discovered quasipolynomial size proofs for the pigeonhole principle and the Kneser-Lovász theorem. These are closely related to formalizability in bounded arithmetic.
متن کاملSymmetries of the Stable Kneser Graphs
It is well known that the automorphism group of the Kneser graph KGn,k is the symmetric group on n letters. For n ≥ 2k + 1, k ≥ 2, we prove that the automorphism group of the stable Kneser graph SGn,k is the dihedral group of order 2n. Let [n] := [1, 2, 3, . . . , n]. For each n ≥ 2k, n, k ∈ {1, 2, 3, . . .}, the Kneser graph KGn,k has as vertices the k-subsets of [n] with edges defined by disj...
متن کاملBrooks' Vertex-Colouring Theorem in Linear Time
Brooks’ Theorem [R. L. Brooks, On Colouring the Nodes of a Network, Proc. Cambridge Philos. Soc. 37:194-197, 1941] states that every graph G with maximum degree ∆, has a vertex-colouring with ∆ colours, unless G is a complete graph or an odd cycle, in which case ∆ + 1 colours are required. Lovász [L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. 19:269-271, 1975] gives an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1402.4338 شماره
صفحات -
تاریخ انتشار 2014